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Abstract Ventricular assist devices (VADs) are implan-

ted in patients with end-stage heart failure to provide both

short- and long-term hemodynamic support. Unfortunately,

bleeding and thromboembolic complications due to the

severely disturbed, dynamic flow conditions generated

within these devices require complex, long-term anti-

platelet and anticoagulant therapy. While several studies

have examined the effectiveness of one such agent, aspirin,

under flow conditions, data comparing the efficacy of

in vitro and in vivo metabolized aspirin is lacking. Two

sets of studies were conducted in vitro with purified human

platelets circulating for 30 min in a flow loop containing

the DeBakey VAD (MicroMed Cardiovascular, Houston,

TX, USA): (a) 20 lM aspirin was added exogenously

in vitro to platelets isolated from aspirin-free subjects, and

(b) platelets were obtained from donors 2 h (n = 14) and

20 h (n = 13) after ingestion of 1,000 mg aspirin. Near

real-time platelet activation state (PAS) was measured with

a modified prothrombinase-based assay. Platelets exposed

to aspirin in vitro and in vivo (metabolized) showed 28.2

and 25.3 % reduction in platelet activation rate, respec-

tively, compared to untreated controls. Our results dem-

onstrate that in vitro treatment with antiplatelet drugs such

as aspirin is as effective as in vivo metabolized aspirin in

testing the effect of reducing shear-induced platelet

activation in the VAD. Using the PAS assay provides a

practical in vitro alternative to in vivo testing of antiplatelet

efficacy, as well as for testing the thrombogenic perfor-

mance of devices during their research and development.
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Introduction

Mechanical circulatory assist (MCS) devices such as ven-

tricular assist devices (VADs) are often employed to aug-

ment the function of failing ventricles in patients with

advanced heart failure. While VADs are effectively uti-

lized to provide a bridge-to-transplant or as destination

therapy, they unfortunately still have limitations such as

mechanical failure, infection, bleeding, and thrombosis [1].

Intracorporeal continuous-flow axial rotary VADs in par-

ticular offer a compact design and simplicity in operation

[2], but are characterized by pathologic flow patterns that

generate elevated shear stresses and exposure times. These

conditions make platelets more susceptible to shear-

induced activation, resulting in enhanced coagulation and

formation of thromboemboli [3]. Patients implanted with

such devices are routinely prescribed antiplatelet and

anticoagulant agents to limit such complications [4].

Pharmacologic antithrombotic therapy is complicated and

often problematic for these patients, with the observation of

concomitant MCS-associated hemorrhagic complications

such as acquired von Willebrand disease (VWD), gastro-

intestinal and intracranial bleeding [3]. Several techniques

are employed to monitor the efficacy of pharmacotherapy

in reducing risk of thrombosis [5, 6], and include throm-

boelastography (TEG), prothrombin time (PT), activated
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partial thromboplastin time (aPTT), International normal-

ized ratio (INR), aggregometry, and flow cytometry [4, 7–

9], as well as point-of-care devices (platelet function ana-

lyzer [10, 11], cone-and-plate(let) analyzer [12, 13], Veri-

fyNow [14], and PlateletMapping [14–16]). However, a

standardized approach to objectively determine pharma-

cotherapeutic efficacy is lacking [17, 18].

Patients on continuous-flow VADs undergo pharmaco-

therapy that includes both anticoagulant and antiplatelet

prophylaxis—the latter is our focus in the current study—

to measure the hypothesized decrease in shear-induced

platelet activation with the addition of antiplatelet agents

in vitro. We studied the effects of aspirin [acetylsalicyclic

acid (ASA)] as it is routinely prescribed to limit the effects

of flow-induced platelet activation in most MCS devices

and device components such as the VAD, mechanical heart

valves (MHVs) and the total artificial heart (TAH) [4].

Aspirin is known to significantly reduce occurrence of

adverse cardiovascular events such as stroke and myocar-

dial infarction [19]. While aspirin is known to selectively

inhibit platelet aggregation induced via the cyclooxygenase

(COX-1) pathway (i.e., by agonists such as ADP, epi-

nephrine and collagen) [20], the effect of aspirin on shear-

induced platelet activation—via a different activation

pathway—is poorly understood. It is speculated that aspirin

inhibits thrombin generation in blood by acetylating pro-

thrombin and macromolecules on the platelet membrane

rather than a direct inhibition of cyclooxygenase [21]. The

antithrombotic properties of aspirin post-implant of MHVs

have been confirmed by a meta-analysis based on 10 sep-

arate studies wherein aspirin reduced thromboembolic

events from 9 to 4 %, and a lower dose (100 mg/day) was

associated with significantly reduced risk of bleeding [22].

It is known that despite the administration of aspirin,

about 26 % of patients suffer from aspirin resistance and

persistent platelet activation [23]. Two of the most com-

monly-implanted VADs in clinical trials, the recently-

approved HeartMate II (Thoratec Corporation, Pleasanton,

CA, USA) and the DeBakey (MicroMed Cardiovascular,

Houston, TX, USA), suffer from thromboembolic incident

rates of 0.9–5 and 10.7–13 %, respectively, despite pro-

phylaxis [24–27]. While physicians have tried to optimize

antiplatelet dosing [18], these efforts do not address the

underlying cause of thrombotic complications, namely the

flow conditions in the devices themselves. Several studies

have examined the effect of aspirin administered directly

[28, 29] or metabolized in vivo [30, 31] on platelet acti-

vation or aggregation under controlled in vitro fluid shear

conditions. To the best of our knowledge, no in vitro

examination has studied the antiplatelet effect of aspirin

under the dynamic flow conditions found in VADs.

The aims of this study were twofold: (1) show that

platelets directly treated with aspirin or obtained from

subjects who ingested aspirin yield similar activation rates

after subsequent exposure in a VAD; and (2) demonstrate

that treatment with aspirin is less effective in reducing

platelet activation rate (PAR) compared to device design

modification. The global objective of this study is to ini-

tiate development of in vitro methodologies that compare

device design changes side-by-side with traditional phar-

macotherapy in order to reduce device-induced thromb-

ogenicity and lower incidences of drug-induced

complications. Our group has developed and successfully

used a modified prothrombinase-based assay to measure

the near real-time bulk platelet activation state (PAS) [32]

of platelets in flow loops containing prosthetic heart valves

[33], VADs [34], and TAH [35]. In this study, we examine

the evolution of PAS of platelets during repeated passages

in the DeBakey VAD after in vitro administration or

in vivo metabolism of aspirin and demonstrate the simi-

larity of the two approaches in the resulting platelet acti-

vation response. These results are compared with our

recently published data from the design optimization of the

DeBakey VAD to the HeartAssist 5 VAD (MicroMed

Cardiovascular, Houston, TX, USA) [34] and show the

distinct advantage of improving device thrombogenic per-

formance of MCS devices by design optimization as

opposed to more traditional and complex antiplatelet

therapy.

Materials and methods

Study design

Two sets of studies were conducted: (a) Drug-free sub-

jects did not take ASA prior to blood donation, with ASA

added to platelets in vitro; (b) Drug-loaded subjects were

administered ASA; with blood being obtained prior to

ingestion of ASA and after a specified time (either 2 or

20 h). Specifically, the following three scenarios were

studied: (1) in vitro ASA treatment of platelets, (2)

ingestion of ASA and blood drawn at 0 h (pre-ingestion)

and 2 h, and (3) ingestion of ASA and blood drawn at 0 h

(pre-ingestion) and 20 h. A total of 45 healthy adult

volunteers were recruited for the above three scenarios.

Volunteers were screened and excluded for the following

risk factors: regular aspirin or ibuprofen use or intake

within 2 weeks of participation, aspirin allergy, asthma,

history of gastrointestinal disorders, pregnancy, smoking,

high blood pressure, high cholesterol, type I and type II

diabetes, high alcoholic intake, history of myocardial

infarction or stroke, and Omega-3 supplement use. Con-

sent was obtained as per Stony Brook University IRB-

approved protocol and whole blood was drawn via veni-

puncture into 10 % ACD-A.
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In vitro drug reconstitution, in vivo antiplatelet

treatment, and purified platelet preparation

For the in vitro treatment with ASA, 120 mL of whole blood

was obtained, while for the in vivo ASA studies, 30 mL of

whole blood was drawn from the antecubital vein prior to

ASA ingestion. Participants in the in vivo treatments

ingested 1,000 mg buffered aspirin (two 500 mg Ascriptin

tablets, Novartis, East Hanover, NJ, USA) and were asked to

return either 2 or 20 h after their initial donation for a second

30 mL donation. In addition, blood serum obtained after

both donations from the volunteers who ingested ASA was

analyzed for salicylate concentration.

Purified gel-filtered platelets (GFP) were prepared from

whole blood as previously described and diluted to a count

of 15,000 lL in HEPES-modified Tyrode’s buffer

(‘‘platelet buffer’’) with 5 mM Ca2? [32, 36]. For in vitro

ASA experiments, GFP were treated with ASA dissolved in

sodium bicarbonate solution (324 mg ASA, 965 mg citric

acid, and 1,744 mg sodium hydrogen carbonate in 50 mL

double-distilled H2O) 10 min prior to experiments. Control

platelet mixtures were prepared with the addition of the

solvent vehicle and without ASA 10 min prior to exposure

in the VAD.

Exposure in VAD and measurement of PAS

GFP mixtures were exposed for 30 min at 37 �C in a flow

loop containing a DeBakey VAD (MicroMed Cardiovas-

cular Inc., Houston, TX, USA), with the inlet and outlets

connected via short 0.500 I.D. Tygon R3603 loop tubing and

0.2500 I.D. Tygon R3603 flow resistor tubing of 4700 length

(Fig. 1). VAD pump conditions were set at 4 L/min cardiac

output and 9,500 rpm, corresponding to average physio-

logical and clinical operating ranges, and controlled using

the MicroMed Clinical Data Acquisition System (CDAS).

These settings correspond to a pressure rise of

*70–80 mmHg across the pump [34].

Platelet samples were taken at t = 0, 10, 20, and 30 min

for the chemically modified prothrombinase PAS assay

[32, 37] through a silicone sampling port upstream of the

VAD. Briefly, the PAS assay uses acetylated prothrombin

to measure the rate of thrombin generation. The use of

acetylated prothrombin blocks feedback action of gener-

ated thrombin on the platelets, and ensures linear kinetics

during the assay and quantitative measurement of PAS.

The results of this assay correlate well with P-selectin [33]

and Annexin V [37] expression, as quantified with flow

cytometry. PAS values were normalized against the

activity of fully activated platelets, obtained by sonication

(10 W for 10 s, Branson Sonifier 150 with microprobe,

Branson, MO, USA). PAS values are therefore expressed

as a fraction of the maximum thrombin-generating capac-

ity, with a maximum of 1.0. This assay allows for a 1:1

correlation between the applied shear stress and thrombin

generation and activation changes as low as 0.1 % can be

detected [32]. The PAR for each experiment was obtained

from the slopes of best-fit lines fit to normalized PAS

values.

Statistical analysis

Differences in PAR were obtained by subtracting the PAR

calculated for ASA-treated platelet experiments from PAR

obtained for paired control experiments conducted on the

same day in a similar manner with untreated platelets. Per-

centage change in the PAR was calculated by dividing this

difference by the control PAR and multiplying by 100. Paired

samples Student’s t-tests were used to compare the ASA-

treated and control PAR values for each set of experiments,

while differences between the PAR for control and ASA-

treated experiment were compared to a value of 0, which

represents the condition where PAR for ASA-treated and

untreated platelets is identical. Significance was achieved for

p \ 0.05. Results are presented as the mean ± standard error

of the mean (SEM), unless otherwise stated.

Results

Platelet activation was measured using the modified pro-

thrombinase method for platelets flowing in the MicroMed

DeBakey VAD operating at a cardiac output of 4 L/min

and 9,500 rpm for 30 min. Three sets of experiments were

conducted: (1) platelets treated in vitro with 20 lM ASA

(n = 15), (2) platelets treated in vivo with 1,000 mg ASA

and tested 2 h after ingestion (n = 14), and (3) platelets

treated in vivo with 1,000 mg ASA and tested 20 h after

ingestion (n = 13). One volunteer from the 20 h in vivo

ASA treatment experiments did not complete the study,

while one volunteer each from the two in vivo ASA

Fig. 1 Flow loop with MicroMed DeBakey VAD. Platelets were

recirculated through a VAD operating at 9,500 rpm and a cardiac

output of 4 L/min for 30 min. Platelet samples were withdrawn every

10 min through a silicone port upstream of the VAD. (Adapted with

permission from Girdhar et al. [34])
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treatment studies yielded PARs more than two standard

deviations from mean values, and data from their partici-

pation is not considered in the subsequent analysis. For

each ASA-treated platelet experiment, a paired control

experiment with untreated platelets and the solvent vehicle

control was performed on the same day with identical VAD

operating conditions.

Significant reduction in PAR was observed for platelets

treated in vitro with 20 lM ASA (Fig. 2). Mean PAR

decreased 0.94 ± 0.42 (910-4) min-1, or 28.2 %, after

in vitro ASA treatment compared to paired untreated

controls (p \ 0.05, Table 1). In vivo ASA-treated platelets

showed a 0.45 ± 0.15 (910-4) min-1, or 25.3 %, reduc-

tion in PAR 2 h after treatment when compared with paired

control experiments (p \ 0.01, Fig. 3; Table 1). This

contrasts with a 0.01 ± 0.35 (910-4) min-1, or 0.6 %,

increase in PAR 20 h after treatment when compared with

paired control experiments (p [ 0.5, Fig. 4; Table 1).

Salicylate concentration increased to 6.73 ± 0.56 mg/dL

2 h after ASA ingestion (p \ 0.001, Fig. 5a), but returned

to control baseline levels 20 h post-ingestion

(0.13 ± 0.07 mg/dL, p [ 0.5, Fig. 5b; Table 1).

However, the reduction in platelet activation achieved

with ASA is threefold less than that achieved by design

optimization of the original DeBakey VAD to the Heart-

Assist 5 VAD [34].

Discussion

We investigated whether aspirin added to platelets in vitro

(pro-drug form) or in vivo (metabolized form) prior to the

in vitro recirculation experiments in the DeBakey VAD

decrease shear-induced platelet activation due to repeated

passages through the VAD. We demonstrate for the first

time that direct treatment with aspirin is as effective as

in vivo metabolized aspirin in reducing platelet activation

due to the dynamic flow conditions in the DeBakey VAD.

We have shown that a maximum over-the-counter dosage

of 1,000 mg aspirin yields a 25.3 % drop in PAR 2 h after

ingestion when exposed in a flow loop containing the

DeBakey VAD, but this activation rate returns to baseline

levels 20 h after ingestion (Table 1), emphasizing the need

for daily aspirin administration. Direct treatment with

Fig. 2 Platelet activation post-

in vitro ASA treatment.

a Evolution of PAS for 20 lM

ASA-treated platelets and

untreated platelets recirculated

for 30 min through the VAD

showed a b 28.2 % decrease in

the PAR after ASA treatment,

determined from the slope of

lines fit to PAS values (n = 15,

p \ 0.05). Error bars represent

the SEM of PAS or PAR,

respectively

Table 1 PARs and salicylate concentrations for ASA-treated platelets in the DeBakey VAD

Experiment PARa (910-4 min-1) DPARa (910-4 min-1) p vs. control [SAL]b (mg/dL) p vs. control

In vitro ASA treatment (n = 15)

Control 3.30 ± 0.61 – –

20 lM ASA 2.37 ± 0.47 0.94 ± 0.42 0.04

In vivo 2 h ASA treatment (n = 14)

Control 1.78 ± 0.20 – – 0.03 ± 0.02 –

2 h post-treatment 1.33 ± 0.17 0.45 ± 0.15 \0.01 6.73 ± 0.56 \0.001

In vivo 20 h ASA treatment (n = 13)

Control 1.62 ± 0.32 – – 0.12 ± 0.06 –

20 h post-treatment 1.63 ± 0.33 -0.01 ± 0.35 [0.5 0.13 ± 0.07 [0.5

PAR, DPAR, and (SAL) values are presented as mean ± SEM
a Mean PAR values are obtained from the slope of lines fit to PAS values from the 30 min platelet exposure in the VAD. The difference in PAR,

DPAR, between the aspirin-treated platelets and untreated platelets are reported as the means of DPAR for each experimental pair
b Salicylate concentrations (SAL), were obtained during each blood donation and prior to experiments
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20 lM aspirin yields a 28.2 % drop in PAR under similar

experimental conditions (Table 1).

Standard antiplatelet protocols for individuals implanted

with VADs involve commencing administration of

81–325 mg ASA daily 2–5 days postoperatively [7], with

maximum dosage of 650 mg/day [4]. However, doses as

low as 40 mg are sufficient to cause significant prolonga-

tion of bleeding time [38]. Despite daily aspirin therapy, up

to 40 % of VAD patients encounter aspirin resistance, and

increase in dosage reduces platelet aggregation in most

patients [23, 39]. Investigators have attributed this to high

platelet turnover after surgery [40], particularly among the

high fraction of young platelets unresponsive to aspirin

[41], elevated thromboxane production [42], and uninhib-

ited thrombin generation [43], among other potential eti-

ologies. For this reason, some VAD patients concomitantly

take dipyridamole, as it has the effect of reducing platelet

aggregation by inhibition of adenosine uptake and inhibi-

tion of phosphodiesterase pathways more than aspirin alone

[4, 44] and does appear to significantly increase the risk of

bleeding [45]. We observed that platelets treated directly

with 20 lM dipyridamole showed 31.2 % decrease in

activation rate [46], showing reduction similar to that of

aspirin-treated platelets, and it may be inferred that con-

current treatment is likely to reduce this activation rate

further. This will be investigated in our future studies.

We used isolated platelets in order to examine the direct

effect of aspirin and fluid shear stress on thrombin gener-

ation without the subsequent feedback, platelet aggrega-

tion, and clot formation. These platelets were diluted to a

concentration of 15,000 lL due to the large volume

required for the flow loop and limited blood volume

Fig. 3 Platelet activation 2 h

post-in vivo ASA treatment.

a Evolution of PAS for ASA-

treated platelets and untreated

platelets recirculated for 30 min

through the VAD showed a

b 25.3 % decrease in the PAR

after ASA treatment,

determined from the slope of

lines fit to PAS values (n = 14,

p \ 0.01). Error bars represent

the SEM of PAS or PAR,

respectively

Fig. 4 Platelet activation 20 h

post-in vivo ASA treatment.

a Evolution of PAS for ASA-

treated platelets and untreated

platelets recirculated for 30 min

through the VAD showed a

b 0.6 % increase in the PAR

after ASA treatment,

determined from the slope of

lines fit to PAS values (n = 13,

p [ 0. 5). Error bars represent

the SEM of PAS or PAR,

respectively

Fig. 5 Salicylate concentration (SAL) a 2 h and b 20 h post-in vivo

ASA treatment. Blood samples showed a mean increase of 6.70 mg/

dL SAL 2 h post-ingestion (n = 14, p \ 0.001) and 0.01 mg/dL 20 h

after ingestion (n = 13, p [ 0.5)

Platelet activity in VAD post-aspirin 503

123



obtained from volunteers. These limitations may not

directly extrapolate to the response of physiological whole

blood consisting of red blood cells, white blood cells,

platelets at tenfold higher concentration, and plasma pro-

teins, which have the ability to amplify the activation

response, and lead to aggregation and adhesion down-

stream of the VAD. Flow cytometry provides detailed

information about expression and amount of platelet

membrane glycoproteins, as well as the extent of individual

platelet activation, and is able to rapidly process large

amounts of individual platelets in small volumes [47]. In

addition, flow cytometry has been utilized to measure

platelet activation after VAD implantation [9, 23, 48].

However, the PAS assay was employed in our study as it

provides near-real time information on bulk platelet

thrombin generation and shows the direct effect of fluid

shear stress. This assay has also been successfully used in

measuring the PAS of platelet-red blood cell mixtures

flowing through the DeBakey and HeartAsssist 5 VADs,

without and with treatment with dipyridamole [34, 46]. In

addition, treating platelets directly with 20 lM solubilized

aspirin was slightly more effective than 2 h in vivo

metabolism of 1,000 mg buffered aspirin (Table 1). This

may allow a quicker and more efficient in vitro approach of

studying the shear-induced activation of aspirin-treated

platelets in blood recirculating devices.

The passage time of platelets in the healthy human or in

patients implanted with axial flow VADs operating at 4 L/

min is *60 s, whereas the passage time in the flow loop

utilized in this study is *1.8 s, and the platelets are thus

exposed to the equivalent of 16.7 h of exposure during the

experiment. While the PARs observed during the experi-

mental exposure are low, extrapolating their activity over

the 5–7 days average lifetime of a platelet in combination

with their irreversible damage history and subsequent

shear-induced sensitization [49] yields platelets that are

quite prothrombotic, even after activation rate reduction

observed in our experiments post-treatment with high-dose

aspirin.

The development of safe and effective VAD therapy is a

pressing issue necessitated by the emergence of compli-

cations such thrombosis and bleeding, due to pathological

device-induced flow conditions and side effects of phar-

macotherapy [4, 17]. Resolution of these complications is

paramount for patients implanted with such devices for

destination therapy, particularly when viable heart trans-

plants are not possible or available [50, 51]. Traditionally,

VAD patients are placed on concurrent antiplatelet and

anticoagulant therapy, but this approach carries an inherent

risk of bleeding [4]. While several studies have proposed

optimal anticoagulation and antiplatelet protocols for axial

flow VAD patients, with warfarin (INR of 2.5) and

100 mg/day aspirin resulting in the lowest bleeding-

thrombosis rates [18], such protocols do not reduce these

incidences to truly acceptable levels, nor do they mitigate

device-induced complications, such as acquired VWD [52].

Design optimization techniques, such as the device

thrombogenicity emulation (DTE) methodology developed

by our group [53], offer an alternative approach to reduce

device-induced risk of thrombosis and bleeding, and in turn

lower the need for complex antiplatelet therapy. Rede-

signing the DeBakey VAD (i.e. to the HeartAssist 5),

where several geometric modifications were made using

this approach, yielded 88.3–91.9 % reduction in shear-

induced platelet activation without the addition of anti-

platelet agents [34]. Our results indicate that in vitro

treatment with antiplatelet agents coupled with device

design optimization [34] may reduce PARs even further.

This suggests that using a thorough design optimization

technique, with computational fluid dynamics simulations

and in vitro validation of design changes, may result in

VADs with less disturbed hemodynamics. This in turn

leads to lower thrombogencity and risk of acquired VWD

development, potentially reducing dependence on complex

antiplatelet pharmacotherapy.
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