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The flow of a power-law fluid in the near-wake of a flat plate
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The analysis of the near-wake flow downstream of a flat plate is reported in this paper for the case
of a non-Newtonian �power-law� constitutive model. To our knowledge, the present paper is the first
to address this problem, as previous work on near-wakes has been limited to the use of a Newtonian
model. The motivation for this work comes from the biomedical engineering problem of blood flow
around the bileaflet of a mechanical heart valve. In the present paper, the series method has been
used to calculate the flow near the centerline of the wake, while an asymptotic method has been used
for larger distances from the centerline. The effects of power-law inlet conditions on the wake flow
are reported for various values of the power-law index n, within the range 0.7�n�1.3. The present
analysis has been successfully validated by comparing the results for n=1 to the near-wake results
by Goldstein �Proc. Cambridge Philos. Soc. 26, 1 �1930��. We generalized the equations for
arbitrary values of n, without any special considerations for n=1. Therefore, the accurate results
observed for n=1 validate our procedure as a whole. The first major finding is that a fluid with
smaller n develops faster downstream, such that decreasing n leads to monotonically increasing
velocities compared to fluids with large n values. Another finding is that the non-Newtonian effects
become more significant as the downstream distance increases. Finally, these effects tend to be more
pronounced in the vicinity of the wake centerline compared to larger y locations. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2338825�
The investigation of the wake flow behind a flat plate
started with the work of Goldstein,1 who reported on the
velocity distribution in the wake close to the trailing edge
�near-wake�. Tollmein2 considered the problem of finding the
first approximation to the asymptotic form of the two-
dimensional wake far behind the flat plate �far-wake�. The
second-order approximation to the asymptotic form of the
far-wake was developed by Goldstein3 in his second paper.
He matched the near-wake solution with the asymptotic so-
lution numerically and reported on the origin of the coordi-
nate in Tollmein’s asymptotic solution. Using an integral
method instead of Goldstein’s numerical approach, Meksyn4

obtained the motion in the near-wake. The previous studies
focused on Newtonian fluids, with the exception of Liu and
Wang,5 who, in a recent paper, reported on a similarity solu-
tion for power-law fluids in the far-wake. The purpose of the
present paper is to analyze the velocity distribution in the
near-wake behind an infinite flat plate model of a mechanical
heart valve �MHV� leaflet, assuming a steady laminar flow of
a power-law fluid. The fact that human blood is a non-
Newtonian fluid has been investigated,6 and the power-law
model is widely used for blood. However, no previous inves-
tigations have reported on the near-wake analysis for this
type of fluid.

For small values of the transverse coordinate �y�, that is,
close to the centerline, the analytical procedure described in
Goldstein1 has been extended in this paper to be valid for
non-Newtonian fluids. An asymptotic method is also devel-

oped for the non-Newtonian case and used for larger y val-
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ues. The two solutions are consistent in the intermediate
region.

Many previous studies have reported on the flow of a
non-Newtonian fluid on a flat plate. However, we have de-
veloped the non-Newtonian inlet conditions imposed in the
present paper for a general value of the non-Newtonian index
n. The inlet power-law profile developed by Lemieux et al.7

in an approximate analysis valid for n�1 is also investi-
gated.

Consider a two-dimensional flow of an incompressible
power-law fluid over an infinite flat plate at zero incidence
�Fig. 1�. Let U� represent the undisturbed velocity of the
stream, l the length of the plate, y1 the coordinate normal to
the plate, x1 the coordinate along the plate, and u1 and v1 the
components of fluid velocity in x1 and y1 directions, respec-
tively. The approximate nondimensional continuity and mo-
mentum equations determining a steady motion in the near-
wake of the boundary layer flow are

�u

�x
+

�v
�y

= 0 �1�

and

u
�u

�x
+ v

�u

�y
=

�
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where the power-law assumption of �xy =K� �u1

�y1
�n

has been
evoked, K /�=m ,� is the mass density, m is a constant,
and the molecular viscosity, �, has been defined as

� �u1 �n−1

�=K �y1

.
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The generalized Reynolds number for a power-law fluid
is defined as ReL= U�

2−nLn�m and the following nondimen-
sional scheme has been used:

x =
x1

L
, y = ReL

1/�n+1� y1

L
, u =

u1

U�

, v = ReL
1/�n+1� v1

U�

,

�3�

where L=4l.
These equations are subject to the following boundary

conditions:

v =
�u

�y
= 0 at y = 0 and u → 1 as y → � . �4�

The condition at the end of the plate �x1=0�, which
serves as the inlet to the near-wake region, will be specified
as the solution of the flow of a power-law fluid in the bound-
ary layer. We develop a procedure for general values of n
and, for validation purposes, examine power-law inlet condi-
tions that are based on the approximate boundary-layer solu-
tions by Lemieux et al.7

We introduce the following transformations for the nor-
malized y coordinate �b and stream function �b:

�b = � 1

n�n + 1��
1/�n+1�

x−1/�n+1�y �5�

and

�b = � 1

n�n + 1��
−1/�n+1�

x1/�n+1�	 , �6�

to reduce the momentum equation to

	�	��2−n + 	� = 0 �7�

and the boundary conditions to

	� = 0 and 	 = 0 at �b = 0,

�8�
	� = 1 as �b → � .

Note that this equation is consistent with Blasius’
profile8 when n is set equal to unity, but the focus here is on
the case n�1.

Equation �7� with the boundary conditions in Eq. �8� is
solved numerically using the shooting method.9 For small
values of �b �i.e., y�, we can express the velocity distribution
in the following power series form:

u = c1�n��b + c4�n��b
4 + c7�n��b

7. �9�

FIG. 1. A schematic of the coordinate system for the near-wake of a flat
plate.
Therefore, at the end of the flat plate, we have
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ui = a1�n�y + a4�n�y4 + a7�n�y7, �10�

where the subscript “i” denotes “inlet” and the coefficients
ai�n� can be easily calculated.

From the approximate analysis by Lemieux et al.,7

which is valid for n�1, the velocity profile at the wake inlet
for power-law fluids can be written as

ui = erf�c�n�y� = 1 +
2c�n�
�


�
�

y

e−�c�n��2y2
dy , �11�

where

c�n� = 	0.982�n + 1�1/2

n2n
�2−n�/2 
1/�n+1�

.

For convenience, we can also write Eq. �11� in the following
form for small y:

ui = a1�n�y + a4�n�y4 + a7�n�y7,

where the parameters a1 ,a4 ,a7 are functions of n.
The near-wake equations for small � values can be writ-

ten as follows:

n
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1−n = 0, �12�
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−
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2f0�, �14�

with the boundary conditions

f i��0� = f i�0� = 0, i = 0,3,6. �15�

Equations �12�–�14� with the boundary conditions are also
solved numerically using the shooting method.9

For large �, the stream function satisfies the equation

� = �0 + ��1 + �2�2

2!
+ �3�3

3!
+ �4�4

4!
+ �5�5

5!
+ ¯ , �16�

where �i=�i�y�. Substitution of this expression into the mo-
mentum equation and extending the procedure in Goldstein1

to the non-Newtonian case allows us to obtain the following
expressions:

�0� =
1

2
	� = ui,

�1� =
1

A	� = Aui�,

2
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�2�
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where A=3
0 ,B=3
0−1.5
3, and 
0 and 
3 are determined
numerically.

The analyses have been carried out for general n values
and investigated numerically for 0.7�n�1.3, which in-
cludes both pseudoplastic and dilatant fluids. The procedure
presented in this paper was successfully validated for the
n=1 case, using the results in Goldstein1 �not shown�. We
have generalized the procedure for arbitrary values of n,
without any special modifications for n=1. Therefore, accu-
rate results for n=1 imply that the procedure as a whole is
correct. The velocity distribution in the near-wake using the
inlet conditions we developed for the case with general n is
shown in Fig. 2 for 0.7�n�1.3. Note in this figure that, for
x1 / l=0.0, the velocity starts out at zero at y=0 and increases
linearly with y. At larger y values �see Fig. 3, obtained from
Lemieux’s inlet profile�, the gradient decreases, eventually
remaining constant at the free-stream value as y becomes

FIG. 2. Near-wake, small-y velocity distribution from the present analysis
for general n. Results are shown for three values of the downstream distance
x1 / l.
large. These features are essentially those of flow “over” a
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flat plate, in which the effects of different n values are
shown. As we move away from x=0 into the wake region in
Fig. 2, the centerline velocity has finite values, with a zero
gradient at y=0. Thus, whereas we see a boundary-layer pro-
file at x=0, the distribution at downstream x values is evi-
dently that of a wake. For the three x stations shown in Fig.
2, we observe lower velocities with increasing n values.

The results in Figs. 2 and 3 can be explained quite easily
by examining the profiles �at x1 / l=0.032� �not shown� of the
velocity gradient, du /dy, viscosity, � /K��du /dy�n−1, and
the shear stress, �xy /K��du /dy�n. Most of the positive ve-
locity gradient at x1 / l=0.032 is located in 0�y�0.4, fol-
lowed by decreasing gradients at large y. We also see rela-
tively large viscosity values close to the centerline y=0 when
n is small �not shown�, with an exponential decrease with y
up until approximately y=0.4. At this point, the fluid be-
comes essentially Newtonian as the shear rates �du /dy� ap-
proach constant values for all values of n. The equilibrium
�Newtonian� viscosity values at large y are different for dif-
ferent n, although this observation is of little dynamic sig-
nificance. The normalized shear stress shows decreasing val-
ues with increasing n, consistent with the viscosity and shear
rate distributions.

The effects of n on the velocity distribution at various
locations �x1 / l=0, 0.032, and 0.108� are also shown in Fig.
2 for general n. The most dramatic effects occur at small
values of y, where velocity decreases monotonically with
increasing n. The differences in the results for the various n
values decrease with increasing y, until the velocity con-
verges to u=1 at infinite y �not shown�. Note that the trends
above also apply to cases in which n�1. The case
n=0.785 is of interest and has been included in the plots, as
this value represents the most commonly used index for hu-
man blood.6 Note that an excellent agreement was observed
between the solutions using general n and those based on
Lemieux’s. However, the two results are not exactly the

FIG. 3. Velocity distribution in the near-wake for the entire transverse �y�
region, using various n values and Lemieux’s power-law inlet conditions.
same, because of the approximations used in Lemieux’s
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procedure. In fact, the Lemieux approximation does not give
the same coefficients and does not reduce to the Blasius so-
lution at n=1.
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